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'\boitrael-A m~thl>d is derived fllr the analy"is of mod~ int~raetillO in thin-wall~d dastic t>.:ams. A
nllOhn~ar plate theory is ~mploy~d I'or the plate segments of the beam. in which th~ ~~act Ill'nhnear
~~pre""wnsarc us~d I'or the middle surl'ace strain m~asures. but the bending m~asur~s ar~ lin~ariz~d.

Th~ beam is sU!>Jected to a combination 01' a~ial ~ompression and a constant b~nding Imlm~nt. and
It is assumed to be simply supportcd at thc cnds. In th~ calculation 01' thc total pot~ntial energy.
thc intluencc 01' thc prcbuckling dcformation" is neglected. Thc tinit~ strip ml,thod is us~d with the
transwr"e variatil1n 01' all thrcc di"placemcnl componcnts dcscrioed by cuoic polynomials in thc
arc Icngth. The nonlin~ar nwdc intcraction is analys~d oy mcans of Koiter's asymptotic thcl1ry 01'
"I'loility. Sl>me applications lll' lhe mctlll'd 10 reprcscntalive pwolcms arc prcscnt~d in a sub"equenl
pap.:r oy thc authors. ThiS shows thaI "igniticant nHldc interaction and imperfection "cnsitivity
(ll'l.:Ur in thl'~~ "ilrul.:tun:s.
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J'"HIc~ ;IIHI -I'lIldn codliciclI!> in nonlinear cquiliorium equal ions. ddined oy eqn (1(»
.1·index codlicient with one ollcklin~ mode replaced oy one 01' thc remainin~ e,~.:nl'unclion" II,
Wllllh 01' tinitc strip
;Ilnih;,ry .1'lIlde~ codlicient. cqn (27)
;Ilniliary -I-inde~ codlicienh. eqn (2')'1)
codlicienh III hlllri.:r e~pan"ion"or appro.~ima!.:di"pbcements. cqn (17<:)
Youn).:·s modulus
da"liclly leusor. cqn (50)
functions descrioin~ transverse variation of appnHima!.: displacements. eqn (170)
au~iliary ener~y functional. eqn (100)
principal moments of inertia of eross-se.:tion
eontrihutions to stitfness matri~ of a strip, associatcd with thc filth harmonic. C4n (lUa)
contrihulious to stilrucss matn~ or complete structure. associaled wllh the filth harnlllnie.
eqn (21)
lenglh of oeam
inlernalnlUlllenls in plale
wavc numhl'r assllci"l.:d with the ith huck ling mode
illiernal forecs in plate
numoer of huekling nllldes
au~iliary functionals. eqns (2-1) and (25)
plate lhickness
displacemcnl components
displaccmenl vector with .:omponents ",
dISplacement vectur of the ith huck ling mude
2nd and Jrd order displaccments. eqn (12)
displaecment ddining ~eomclri.: impcrfcetion, eqn (1-1)
components of appro~imatcdispla.:ement uscd in lini!e strip method, cqn (17al
displacement ve.:tor with components II,
cqn (I'l)

eqns (17a) and (17e)
remainin~ cigenvec!or (no! a hu.:kling mode). eqn (31)
residual displaccment. cqn (10)
nodal displaccments of strip. 'Isso.:iatcd with filth harmonic. cqn (I X)

vector ..... ith .:omponcnts 1'7
nodal displacement Vl'Ctur uf complete structure, associated with mth harmonic. eljn (:! I)
nodal displacement vcetor of the ith huck ling mode and asso.:iated ..... ith the mth harmoni.:
nodal displaccment vector of the 2nd ordcr displa.:cmcn! licld and associated with the "'th
harmunic. clin (26)
displa.:emcnt component normal to plate

t Also at Ramh,,11 & Ilanncmann. Consulting Engineers. Teknikeroyen 3X. 2SJO Virum. Denmark.
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lucal c""rdinat.:s fur plat.: s.:gm.:nt
the vector ;x1t.::
altcrnatn.: notatilln fllr c. t:

ma~lmum abse'lut.: pnnclpal stram in pl..lt.:
ei," Kron.:ck.:r·s ..klta
1:,,1 middk surfac.: stram measures. ':<.jn (I)
'I dimensiunless coordinate ,. h
<1> increment in potential energy in transition from fundamental to adjacent state. eqn (5a)
<P" <1>" ,p ,. 'P, homogeneous functionals making up <1>
(P".,1>".<1>",.'P"" Frechet derivatives of functionals <1>,. <1>" <1>,. <1>,. resp~'Ctively. see eqns (7b). (l3b) and

(16<:)
nuddle surface bending measures. e<.jn (2)
IDad fadDr
ei"envalue of the /th buckling mode
L;grange multipliers. eqns (23a) and (26)
Poisslln"s ratill
coetticlents of buckling modes. eqn (10)
codlicients determining geometric imperti:ctions. e<.jn (14)
cDdticients of remaining eigenvectors. e<.jn (31)

I"dices
Small Latin indices: IDwer indices i.l. k assume th.: values 1.2.3. An upper inde.~ m denotes the wave number.

Small Gr.:ck indie.:s x.ll. i. It a>sumc the valu.:s 1.2.

Small script indices f. I. I. ( ar.: uscd to numb.:r buckling modes and assume the values 1.2..... tV,.

Capital L;ltin indlc,:s I. J arc used te' number fwdal displacements and assume the values I tl' 12.

Other symbl'ls arc ddin.:d as they appear in the t"t.

1. I:--ITR()[)UCT(ON

Thin-walkd dements are widely used as structural cotl\ponents in many types of metal
structures within the fields of civil, mechanical and aeronautical engineering. Because
of the sknderness of these structures. their design will often be governed by stability
eonsidera tions.

Staoility failun: in a thin-walled structure tl\ay occur either as local, plate-type buckling
of one or more of the compressed panels, or as overall buckling of the compktc structure
(flexural column ouckling or flexural torsional lateral buckling). In the case of local
buckling. the wavelength of the buckling tl\ode is of the order of magnitude of the width
of the cross-section, whereas the wavdength of the overall global buckling mode is of the
order of the total length of the structure. If the critical loads of these two types of buckling
are nearly the same. an interaction between the buckling modes will generally take place.
and this tl\ay result in a significant reduction of the load-carrying capacity of the structure.
Such problems often arise in connection with optimal structural design.

During the last two decades, a considerable amount of theoretical work has been
devoted to stability probkms involving interaction between local and global buckling
modes. These investigations may be divided into two main groups.

The methods in the first group can be characterized in the following manner: the
overall behaviour of the structure is described by one-dimensional beam theory, and the
interaction is accounted for by the usc of a reduced bending stiffness for the beam. This
reduced stifl'ness may be obtained from a theoretical analysis, in which a short segment of
the beam is considered and plate theory is applied to the individual panels. or it may be
determined elllpiric,dly from test results. Among the theoretical studies in this group
mention should be made of van der Neut's investigations (van der Neul, 1969, 1976), of an
idealized column model and ofstilTened pands, the paper by Graves-Smith (1969~ in which
approximate analytical solutions of von Karman's plate equations are utilized, and the
papers by Svensson and Croll (1975) and Svensson (1976). The work by Hancock and
Bradford also belongs to this group (see e.g. Bradford and Hancock, 1984; Hancock.
1981a, b) and involves a numerical solution of the nonlinear plate equations (including
plasticity etl'ects) which is used to determine the reduced bending stitl'ness. The design rules
for thin-walled structures in codes of practice (often formulated in terms of "effective
widths" or "etlcctive cross-sections") are usually based on methods of the above-mentioned
type.
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The methods in the second group are based on the nonlinear theory of elasticity. The
thin-walled structure is treated as an assemblage of rectangular plate segments, and an
expression for the total potential energy of the structure is derived. The finite strip method
or Galerkin's method is often employed, thereby transforming the given continuous system
into an equivalent discrete modd. The solution may be obtained either by:

(a) iterative solution of the nonlinear equilibrium equations derived from the energy
expression of the discrete modd, or by

(b) application of Koiter's theory of stability (Koiter. 1945), in which a series of linearized
problems are solved successively and used to construct a perturbation solution which
decribes the nonlinear behaviour of the structure. Koiter's theory may be applied either
to the discrete model or directly to the given continuous system.

Among the investigations belonging to category (a) we may mention a series of
papers by Graves-Smith and Sridharan (e.g. Graves-Smith and Sridharan, 1978, 1980a, b:
Sridharan and Graves-Smith, 1981), in which the finite strip method is used for the thin­
walled structure, and the associated nonlinear equilibrium equations an: solved iteratively.

Turning now to category (b) (application of Koiter's theory). one of the early con­
tributions is Tvergaard's investigation of mode interaction in stitfened panels: sec Tvergaard
(1973). Koiter and his co-workers have studied several problems of mode interaction in
thin-walled structures since the early seventies (the van der Neut column and various types
of stiffened panels; sec e.g. Koiter and Kuiken. 1971 ; Koiter. 1976; Koiter and Pignataro.
1976). An approximate method is used in which an assumed displacement field involving
so-called slowly varying functions is introduced into the framework of Koiter's general
theory of stability. Mention should also be made of Byskov's papers on mode interaction
in the van der Neut column and in stiffened cylindrical shells (sec Ryskov and Hutchinson.
1977; Byskov, II)X.1). which utilize the theory of mode interaction developed in Byskov and
Hutchinson (llJ77).

Finally. a number of recent inwstigations by Sridharan and his co-workers should be
mentioned. sec Benito (19X.1). Benito and Sridharan (19X5a, b), Sridharan (19X.1), Sridharan
and Ashraf Ali (llJX5) and (19X(l). [n these papers. the tinite strip method is used in
conjunction with Koiter's thcory. In the first four papers. the calculations are restricted to
a 2-mode analysis involving one local and one glubal mode. and this will not always providc
a sulliciently accurate llesniption of the structural n:sponse. However. a 3-mode analysis
with two local and one global mode is introduced in the two latest papers. Sridharan and
Ashraf Ali (llJX5, IlJX6).

Inspection of the papers referred to hitherto will reveal that they all make use of one
or more of the following approximations and simplifications.

(I) SOl11e of the nonlinear terms arc often neglected in the expressions for the middle
surface strain components of the plate segments.

(2) Local buckling is usually described by von Karman plate theory (frequently with
the additional assumption that the longitudinal edges between adjacent plate segments do
not move). and global buckling is often described by beam theory.

(3) When Koiter's theory is employed. the 2nd order displacements arc often approxi­
mated by particular solutions to the governing diflerential equations. thus violating the
boundary conditions at the transverse end sections. If the 2nd order displacements are
represented by fourier expansions in the longitudinal direction, only a lew terms of these
expansions are usually retained in the analysis.

(4) [n almost all the above papers. it is assumed that only two modes take part in the
interaction (one local and one global mode).

In the present paper, we derive a theory of thin-walled clastic beams capable of
describing the whole range of behaviour of these structures from local to global buckling
(this is in contrast to most of the existing methods. in which different theories arc in fact
used to describe local and global buckling). The structure is regarded as an assemblage of
plate segments. and the finite strip method in conjunction with Koiter's theory is used for
the solution. [t will appear from the description of the method in the following sections
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Fig. l. Plal~ s~gm~nl.

that the various approximations and simplifications listed previously are all dispensed with
in our proposed theory. A subsequent paper, Goltermann and Mollmann (1989). describes
the application of the theory to some representative problems.

The theory was first presented in the second author's thesis, Goltermann (1985). and
was used to study several examples of mode interaction in thin-walled beams.

:!. GENERAL THEORY OF THIN-WALLED ELASTIC BEAMS

We consider thin-walled prismatic beams composed of plane. rectangular plate seg­
ments interconnected along longitudinal edges. Each plate segment is assumed to be of
constant thickness which is small compared with the length and width of the segment. For
each segment we introduce a local Cartesian coordinate system .':1.\"1.':', for which the '\:\.':1­

plane coincides with the undeformed middle surt~lce, and the x I-axis is parallel to the
longitudinitl edges of the undeformed plate, see Fig. I.

Letll,(x) denote the components in the .\·,-system of the displacement vector u of the
middle surl~lce (measured from the unddormed state). Note that small Latin indices assume
the values 1,2, J, and that x = {.\: I,.': 2:' denotes the convected coordinates to a generic point
on the middle surface. We shall occasionally write II'(X) = II,(X) for the normal component
of the displacement.

Strain (/fIll hending /I/e(/,l'lIre.\'

The following tensors arc introuuceu to describe the strain anu bending of the middle
surface of a plate segment.

Strain /I/e(/'l'lIres

Bendiny /I/e(/Sllres

">/1 = - 11',>/1

(I)

(2)

where small Greek indices assume the values 1,2, the comma notation is used for partial
derivatives, and the summation convention is valid for lower Greek indices and for lower
Latin indices.

The usc of the complete nonlinear strain expression (I) (including nonlinear terms in
all the three displacement components) will enable us to describe overall buckling which
involves significant in-plane displacements. This is in contrast to the conventional von
Karman plate theory (nonlinear terms only in the normal displacement \1') which can merely
describe transverse buckling of the plate.

[t will be seen that the expression (2) for the bending measures is linearized with respect
to the displacements. Let y denote the maximum absolute principal strain in the plate and
assume that the order of magnitude of the displacement gradients is given by II,,> = 0(/·2)
(moderate rotations). [t can then be shown that the relative error of the approximation (2)
is of order t'.
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SlIpport conditions
The beam is assumed to be supported at the ends by transverse diaphragms which

prevent displacements in the planes of the diaphragms but offer negligible resistance to
displacements perpendicular to the diaphragms (simple supports). The corresponding geo­
metric boundary conditions are therefore given by

II~ = O. w = 0

at the ends of the beam (XI = 0 and XI = L).

(3)

Loading
We assume that the beam is loaded by prescribed axial stresses on the end sections

with a plane stress distribution over the cross-section. and that the prescribed stresses are
always parallel to the xI-axis ("dead" loading). The prebuckling equilibrium state (the
fundamental state) is then a state of uniaxial longitudinal stress. The loading is specified as
the product of a unit loading system and a scalar load factor ;..

Di.l'p/ilU'l/ll'nt.l' ol./illlda/Nentil/.I'tate neg/ectu/
In the following we shall assume that the displacements from the undeformed to the

fundamental state arc negligible. and we shall omit these displacements when forming the
potential energy expression. This is an excellcnt approximation in the case of column
loading (unift1flnly distributed prescribcd stresses). where the corresponding relative error
in the potential energy is of the order of the maximum principal strain of the fundamental
state (sec Koiter. 19H2). However, in the case of moment loading (a non-constant plane
distrioution of prescrioed stresses). the approximation is somewhat less accurate. Thus. in
the case of overall lateral ouckling of a thin-walled oeam suojected to oending aoout the
major principal axis. it can oe shown that the omission of the displacements of the funda­
mental state gives rise to a relative error in the critical moment which may oe of notieeaole
magnitude (of the urder 1,/120 where I~ and 1\ « I~) are the principal moments of il1l:rtia
of the oeam cross-section), although the postouckling oehaviour appears to oe only slightly
affected oy the present approximation (see Goltermann. 19H5; Pellersen. In2).

Omission of the displacements of the fundamental state implies that we ignore the
ditference oetween the configurations of the undeforrned state anll the funllamental state.
and we may conse4uently regarll the previously definell llisplacements II, as additional
displacements from the fundamental state to an adjacent state.

Tota/ potclltia/cllergy
The omission of the llisplacements of the fundamental state implies that we have a

linear fundamental state with internal forces anll moments given by:

(4)

where ,VII is a linear function of X~ according to the present type of prescrioed loading.
Assuming small strains anll an clastic material. the increment in potential energy of

the beam in the transition from the fundamental state to an adjacent state (at the same load
factor ;.) is given by

(Sa)

where the elasticity tensor £,/1"" in the case of a homogeneous and isotropic material. is
given by
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(Sb)

In this formula. £ denotes Young's modulus. v is Poisson's ratio. t is the thickness of the
plate segment. and '),11 is Kronecker's delta. It should be noted that the integration in (Sa)
is extended over the middle surfaces of al/ the plate segments of the beam. and that the
displacement components in each plate segment are referred to the associated local coor­
dinate system. The potential energy (Sa) may be written in the form

(6a)

where II>, [u] and Ii>, [u] denote homogeneous functionals of the ith degree in the displacement
derivatives given by

(fib)

1. I NTLJ{M TION A :-.I A I. YSIS f.'OJ{ ("ON'll Nl!OI IS SYSTLl\1S

Tht: critit:al points on the fundamt:ntal equilibrium path are dt:termined by the eigen­
v;t!ues of the linear eigt:nvalut: problem

(7a)

whae ()u is a kinematically admissible but otherwise arbitrary displal.:ement variation. The
bilinear functionals 1['11 and d>11 arc defined by

1[>11 [u. v] = I!>';UV. Ib ll [u. v] = <i>'~uv (7b)

where dashes denote Fr~chet derivatives.
It can be shown that the problem (7a) in the present case possesses an enumerable set

of eigenvalut:s i., (.f = I. 2. 3.... ) and associated eigenfunctions II} (x). The eigenvalues are
all non-zero. and the eigenfunctions satisfy the orthogonality conditions

1!>II[U"lI/] =0. <b ,, [U,.lI/]=() for .'11=1. (7c)

We shall also consider the etl"cct of geometric imperf"cctions. We assume that the
conliguration of the unloaded imper/"cct structure is determined by an initial displacement
field lI"'(x). Koiter (1945. 19XO) has shown that. in the case of small imperl"cctions. the
increment in potential energy <[>'" for tht: imper/lxt structure is obtaint:d by adding a term
i.<i> I I [u .... u] to the energy expression (6a) for the perfect structure. Hence. for the imperfect
structure.

II>'" [li ; i.] = <I> e[u] + i.<D e[ul + <I> ,[u) + <I> .[ul + i.<i> 1 I[u .... u]. (8)

Suppose that we wish to study the interaction for values of the load fal.:tor in an interval
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t." ~ i. ~ i'I-' We then select a finite number N" ofeigenfunctions (buckling modes) for which
the corresponding eigenvalues should include all those contained in the interval i." ~ i. ~ i'I-'
The following notation is introduced for these quantities:

buckling modes:

associated eigenvalues:
U.' (X).} ( = I. 2.. ... .. l\/h'
J., ,

Note that a small script index denotes the number of a buckling mode, and that the
summation convention is valid for script indices.

\Ve now wish to normalize the buckling modes in a suitable manner. The functional
<1>ju] is positive definite (for a properly supported strueture) and could therefore be used
as our norm. but we shall tlnd it convenient to use the somewhat simpler functional <be[u]
for this purpose [ef. (6b)]. However. here we encounter a minor dilflculty. A norm is
generally required to be positive definite. but it can be seen from (7a) that if there are both
positive and negative eigenvalues (as will occur, e.g. in problems of lateral buckling of
beams). then <be[u] will assume both positive and negative values. In order to deal with this
dilflculty, we shall always select our buckling modes in such a way that all the associated
eigenvalues have the same sign (which may be assumed to be positive). It then follows from
(7a) that (jl :lu.] will be negative for all buckling modes. and we shall now normalize the
buckling modes in the following manner:

(9a)

where the repeated underlined indices should not be summed. From (9a) and (7a) it follows
that

(9h)

Consider an equilibriulll configuration in a neighbourhood of the segment t." ~ i. ~ i'I> of
the fUIH.lament,t1 equilibrium path. The displacement of this equilibrium conliguration is
written in the form

u(x) = u, (x)';, + v(x), ( I ()

i.e. a linear combination of buckling modes plus a residual displacement v, where v is
required to be orthogonal to the buckling modes in the sense that

(II)

It can be shown (see Mollmann, 19X4) that the residual displacelllent v can be expressed as
a power series of the form

( 12)

convergent in the above neighbourhood. The u,/ arc called 2nd order displacements, the
U"I are called 3rd order displacements, etc. In the following, we shall only retain the first
term of the expansion (12) (quadratic in the parameters .;.).

The 2nd order displacements u,/ arc determined by the equation

( 13a)

where the variation (h" is required to be orthogonal to the buckling modes. and
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( I3bl

A5suming that the geometrit: imperfet:tions are given b:

u"'(x) = u,(,)~,'" (1"+)

(primary imperfections). it is found that the equilibrium t:ontigurations of the system in the
above-mentioned neighbourhood of the fundamental equilibrium path are determined
by the following non-linear algebrait: equations for the parameters ~, (see Byskov and
Hutchinson. 1977: l\lollmann. 198"+).

(15)

where the underlined repeatcd indit:cs should not bc summed. [I' the completc series cxpan­
sian (12) had been used. we should have obtained an infinite power series on the Icft-hand
side of (15). and this scries has in t~lct been truncated after the cubic terms in agrcement
with our trunt:ation in (12).

The coeillcients a,,1 and (/"I! in (15) are completely symmctric in their indices and are
"ivcn bv:::- . J

(/,,1 = ~(1)1I1 [lI, .1I,.lI,]

(/"I! = i,(l'llll [lI,. lI,.lI,. u,l- ~'';II [lI".lI,,: i·1
( 16a)

wht:re

and

(1'1111 [li. v. W.l! = (V;"lInvl.

.j FINITE STRII' METIIOD

( 16b)

( 16c)

The plate segments of the beam are now divided into a finite number of longitudinal
strips. [n eat:h strip. thc transversc variation of thc thrce displat:emcnt wmponents will bc
approximated by t:ubil.: polynomials. i.e. wc introducc approximatc displat:cments Ii, for a
strip given by (see Goltermalln. 1l)~5)

ii,(x.y) = ') U,dx)/dY)
.\ . I

where we have t:hanged the notation for thc indepelllknt variables. i.e.

The funt:tions /\(.1') arc thc following t:ubic polynomials:

II = 211'-3/1~+ I. J~ = h(ll'-211~+11l

I, = - 211'+ 311'. J~ = h(II'-II')

( 17a)

( 17b)

wherc II = y,h. h bt:ing the width of the strip.
Further. the functions U,v(x) arc taken to be finite trigonometric series as follows:
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I' InnL (J~, COS --- >:
L'

II . mn
U:vlx) = L (J~'.v Sin -L X

", = I

II Inn
U ,,(x) = " c';\ sin - x, mt..:

I
·, L ( 17c)

when: L is the length (If the beam and the quantities (~:~ are initially unknown coellicients.
Assuming that the origin of the local coordinate system is located at one end of the oeam
(see hg. I). it will oe seen that the displacements (17a) satisfy the geometric ooundary
conditions (3) at the ends of the oeam (simple supports).

It lilllows from the form of the cuoic polynomials (17b) and from (17a) and (17c) that
the cocllicients (~'~ (for lixed values of i and m) are the amplitudes of the l/Ith harmonics in
the expansions of the displacement ii, and the derivative 1'li.!I'y at the longitudinal edges of
the strip. see hg. 2.

Most of the previous applications of the linite strip method to the calculation of
prismatic plate structures (see e.g. Graves-Smith and Sridharan, 1'J7X; Benito and Srid­
haran, I'JX5a, b) have involved the use of linear functions of y to describe the transverse
variation of the in-plane displacements III and II!, but cuoie polynomials in y for the normal
displacement 11". However, a wupling between in-plane and normal displacements of adjacent
segments takes place at the longitudinal edges, and it is therefore appropriate to use the
same type of functions (cubic polynomials) for all three displacement components, as we
have done.

If the approximate displacements (17a) are substituted in the energy expression (X),
the potential energy of a strip becomes a 4th degree polynomial in the cocllicients l~:~, amI
we have in clrcct replaced the continuous system by an approximate discrete model. This
approach was used, e.g. by Graves-Smith and Sridharan (I'J7X, I'JXOa, b). However, the
resulting energy expression gets rather unwieldy. and we prefer to proceed in a dilferent
manner. We substitute the displacement approximation (17a) in the governing equations
(7a), (lJa). (16a) of the continuous system. The resulting algebraic equations for the
determination of the modes, the 2nd order displacements, and the coellicients of the
nonlinear equations. will in 1~ICt coincide with those that are obtained from the energy
expression of the discrete model if the perturbation method (Koiter's theory) is used directly
for the discrete system. This follows from the fact that the Frcchet derivatives in (7a), (13a),
and (16a) for the case of the discrete model reduce to partial derivatives. and we obtain the
usual formulae for discrete systems. It will be convenient to introduce a special notation in
(17a) for the group of cocllicients associated with a particular wave number 1/1 in the
trigonometric functions in (17c). The 12 cocflicients (~:~ associated with wave number 1/1 are
denoted by

( 18)



The r7' may be regarded as nodJ.1 dispiJ.cements J.ssl)ciated with wave number m. and the
displacements (Ih) of the strip mJ.y then be written in the form

\f

ii(x.y) == \ u7'/x.r)1'7'
.~-o f

( 19)

where it is understood that the summation convention applies to lower indices but not to
upper indices. and [= 1.2.3..... 12. [n the following..H>[u: i.] vvill denote the contribution
of a strip to the total potential energy of the beam. Consider now the quadratic energy
wntribution (~(t>:[ii]+i.~(b:[iij) from a strip. where we hav'e inserted the approximate
displacement ii(x.y) [see (19)]. Each term of the integrands in the quadratic functionab
contains a product of two trigonometric functions of x. and because of the orthogonality
properties of these functil1ns. all such products involving two ditfcrent wave numbers vanish
when integrated. The result can therefore be written as a sum of contributions. each of
which in valves only the 11l1dal displaccments \.", associated with l)ne parlicular wa ve num bel'.
I.e.

\I

\\/\"')1(1,'" + d'")\'''
m 1

(20a)

where 1,'" and k'" are 12 x 12 matrices with components given hy

1,"'(/. ./) = A([lll [u7'.u';'1

k'" (1. ./) == /\(j'l I [u7'. u';' I· (20h)

The intl'!;r;ltions involved in (20a) arc evaluated analytically. hoth ill ther-direction (pro­
ducts of two trigonometric functions of .r). and in the r-direction (polYlwmials in vol' up
to 6th degree).

At the longitudinal edges of the strip the displacement vectlll' as well as the derivative
(1 11,:(,.1' must he continuous when we pass from one strip to the adjacenl one. Thcse continuity
conditions will he satisfied if we introduce glohal nodal displacements V'" whieh describe
the nodal displacements of all the edges. and then express the Illcal nodal displacements v'"
in terms of the global quantities V"'. Summing the contributions from the strips. the
quadratic energy functional of the complete beam may then he written in the form

1/

(I>:f ii] + i.d> :fliJ = I ~ (V''') I( ,,"'" + i.K"') V"'.
/f/ I

(21 )

[t follows [sec (7a)1 that the modes and eigenvalues llf the disl.'rete model are determined
by the linear matrix eigenvalue problem

(f;'" + ),.1 8"') V.!' == n. (na)

Note th:ltthe x-variation of a mode involves only one wavelength (i.e. V'~ # 0 for only one
value of the wave number 1/1). \Ve shall assume that the modes arc normalized in the
following manner:

I. (22b)

We now select buckling modes ii, for the discrete model (i == 1.2 Vh ). and wc next
consider the 2nd order displacements of the discrete model. Inserli ng the displacement
approximation (19) in eqns (13a) for the determination of the 2nd order displacements.
and removing the orthogonality n:strictions on ,)v- by means of appropriate Lagrange
multipliers. we obtain the equations



Intaa..:tl\e budding in thln-v.albl bcams~ I Th..:"r\ 7~5

(23a)

where It/ (I = I. 2..... :\"0) are the Lagrange multipliers.

If

U... = L u7'(x.y)(r7'l ....
"1 = l

If

liii = L U;"(x.y) lir7'
'_I'" 1

(23b)

and the Jr';' (and thus (iii) are not subjected to any orthogonality restrictions. The functional
$lll[ii,. ii ... (iii] is linear in liii. The corresponding contribution from a strip is written in the
form

If If

(24)
",:-: I ,,,'" I

which defines the vector r:'~. Introducing gk1 bal nodal di'placements. and sumrnll1g the
contributions from the strips. we get

1 If

\(ll [ii ii iiil =. '" (R"')T i\''''.. 111 ,. ,. ( ., L '/ l .

-",:= 1

(25)

The bilinear functionals (1111 and (jIll in (23a) can be exprc,scd in tams of thc matrices "'.'"
and 1\"' [cf. (20b) and (21 )1. From (23a) and (25) we thcn ohtain the JI s\stems or linear- .
equations:

(1\'" 1- i.!\"') V:'~f It I 8'''\';' + ~ W:. ~, II.

(\'~') ,,(.,,,\":,,. = o.

This means that we get one system or linear equations for each value or the wave numher
(Itt = I. 2..... AI) for the determination of the corresponding nodal displacements V:'~ of
the 2nd order displacement field and those Lagrange multipliers JL , I'm which the wave
numher of the associated huckling mode Ii, is equal to 11/.

The coetlicients in the nonlinear equations arc given hy (16a). We tiN consider the
eodlicients (/,/1 with three indices. Let us dcline quantities h, .. , as follows:

(27)

We then tind that the three-index coetlicients arc givcn hy (sec Gl)!termann. IlIX5)

(2X)

The integrations in the x-direction in (27) arc evaluated analytically (products of three
trigonometric function of x). The results of these integrations show that (/,/, = 0 when the
sum of the wave numbers associated with the three modes (IJI, + Itt/ + IJI,) is an even nlllll her.
The integrations in the y-direction arc in eaeh strip computed numerically hy m<:ans of
Gauss' integration formula (the integrands arc polynomials of up to lith degree in y).t

We next consider the <:oetlicients (/,/1/ with four indices. Let us define quantities h'/II

and C,/II as follows:

t A similar method is lIs..:J to evaillat..: th..: components of the \T..:t<1f R:';. s..:e (25). "hidl "I,,) lkpends on
the trilinear fun..:tional '1>",.



(29a)

It is then found that the four-index codlicients arc given by (see Goltermann. 19S5)

(29b)

Now the 2nd order displacements of the discrete model are expressed as tinite trigonometric
series in the x-direction [see (17c)). When we form the expression C~9a)c for C,,((, each term
of the integrands will contain a product of two trigonometric functions of x. the integral
of which vanishes if the corresponding two wave numbl.:rs diller. The result can therefore
be written as a sum of contributions corresponding to each of the wave numbers. and we
obtain [cf. also (20a) and ell]

II

C"(( = L: (Y:';)'(t.""'+i.~"')V;~.
m - I

(30)

It remains to calculate the quantities h,,((, see (29a) I' If we insert the modes of the discrete
model direl:tly into (2()a) I. I.:adl term of the integrand will contain a product of four
trigonometril: funl:tions of x. and these products can easily oe integrated analytil:ally.
Ilowever. it is found that the resulting values of iI,,(( al'l.: rather poorly determined. so that
a large number of terms will be required in the trigonometril: series in (171:) to attain a
sullicient al:l:ural:Y.

We shall therefore USl: an altl:rnative 1lll.:tllOd whidl yields a lllLl\:h improvl:d al:l:ural:Y.
Wl: l:xpand tallls of thl: tYpl: ii;"ii:./I in a linitl: trigonoml:lril: sl.:ril.:s in the x-direl:tion. using
tht: samt: trigonomt:tril: fUIKtions as thost: appl:aring in the expansion of tht: lkrivativt:s
ii/II of thl: I:omponl.:nts of thl: 2nd onkr displal:elllt:nts. Thl: resulting l:xpansions arl: now
suhstituted in (2lJa) I' The intt:grations in thl: x-direl:tion (products of two trigonomdric
functions of x) arl: pl:rfortned analytically. whik the integrations in thc y-direl:tion (poly­
nomials in y of up to 12th degrec) arc evaluated numeril:ally hy lllcans of Clauss' integration
formula. The results of the x-integrations show that a'l/( = 0 when the sum of the wave
numbers associated with the four modes (III, + 11I , + III, + III r ) is an uneven number.

Having determined approximate values of the coetlil:ients iI", and II,I/( by means of
the tinite strip method. we then insert these coellil:ients in the nonlinear eyuilibrium equa­
tions (15). The numerical solution of these nonlinear eyuations is determined by Newton­
Raphson iteration.

Depellt!ellce O/U'I illlt! iI,,/( Oil /ow/ji/c/o,. i.
The presence of the term i.(i> II in (13a) shows that the 2nd order displal:ements u'/ will

depend on the load factor i.. and it follows from (16a) that the four-index coellicients a'l/(

will likewise depend on i.. In order to gain insight into this dependenl:e. the following results
will orten prove useful: Consider a discretl: system with. I' degrees of frl:edom (l:.g. the
linitt: strip model of the thin-walkd beam). SUl:h a system possesst:s. I "linearly inlkpendl:nt
and mutually orthogonal eigenvectors. Suppose that we I:hoosl: Nh bll\:kling modes u,
(t' = 1.2....• Nh ). Then thl: residual displal:ement v. see (10). which is orthogonal to the
bUl:kling modes U" can be expressl:d as a linear combination of the remaining eigenvectors
Ur. I.e.

v = L UI~I
r v,.' t

(31 )

(note that capital Greek indil:es have thl: range N,.+ I to. I). Using (13a) and (7a). it can
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then be shown (see Goltermann. 1985. Appendix 2) that the 2nd order displacement and
the 4-index coefficients can be represented in the form

(32a)

(32b)

where a"r is given by formulae (27) and (28) with u, replaced by Ur. and it is assumed that
the additional eigenvectors Ur are normalized according to (9a).

It can be seen from (32a) and (32b) that u., and a, ," will. in general. possess singularities
for i. = i. r . This observation can be used to explain the reason for our previous remark
(Section 3) about the necessity of including among the buckling modes all the modes with
eigenvalues in the interval of load factors i.~ ::;; i. ::;; i' h with which we are concerned in the
interaction analysis. It will now be seen that. when these modes are included among our
buckling modes. they will not appear in the summation in (32a). This means that we in fact
suppress the singularities in the said interval. and the resulting 2nd order displacements u"
and 4-index coetlicients (/.,,, will therefore be continuous functions of i. in the interval
i." ::;; i. ::;; i.".

However. for the types of thin-walled beams with which we arc concerned. it is found
that there exists a whole cluster of closely spaced eigenvalues in an interval just above the
smallest eigenvalue of the I~)cal modes. It follows from our previous remarks that if we wish
to use the perturbation method for i.-values in this interval, we must then include among
our blll:kling modes all the local modes associated with these closely spaeed eigenvalues.
Although it would be possible, in theory, to perform such a multi-mode analysis, it is not
a practical proposition. as it would increase the amount of calculations by an almost
prohibitive amount. Ilowever. it will be shown in Part" of our paper (Goltermann and
Mollman. IlJXlJ) that. for certain types of local imperfections. we may in fact omit the multi­
mode analysis :llld restrict ourselves to a :I-mode analysis. and still obtain su/liciently
accurate results. The calculations in Part" will therefore mainly be restricted to :I-mode
analyses (or in a few cases 2-mode analyses) of beams with doubly symmetric cross-sections,
in whiell the buckling modes comprise one global mode UI together with one or two local
modes. "1 and" \. Since we use only three (or two) buckling modes, the singularities in the
4-index coeflicients have not been suppressed (this would require additional local buckling
modes), and some of the coeflicients in the nonlinear equilibrium equations (15) of the 3­
mode analysis may thaefore depend strongly on i..

It will be shown in Part" that the 2nd order displacements "II, "11, and "n, and the
associated 4-index eoetlkients (/1111, tll111, amI (/\.131. arc only slightly inlluenced by the
value of i.. On the other hand, the mixed 2nd order displacements" 11 and UI] (associated
with the global mode and one local mode), and corresponding mixed 4-index coellicients
such as (/1111 and till n, may depend strongly on i.. However. it is shown in Part II that,
for the type of local imperfections considered in the paper, the i.-sensitive coefficients do
not appear in our equations, and we obtain a valid solution by using a 3-mode analysis.

5. CONCLUDING REMARKS

A method has been developed for the analysis of nonlinear mode interaction in thin­
walled heams. The method is based on the finite strip method in conjunction with Koiter's
asymptotic theory or stahility, and it is capable of describing the whole range or behaviour
of these structures rrom local to glob:11 buckling. A subsequent paper by the authors
describes some applications of the method to thin-walled beams having doubly symmetrical
cross-section and shows that significant mode interaction and imperfection sensitivity occur
for these structures. Further discussion or the performance and characteristics of the method
will be deferred to our second paper, where the results of the numerical examples are at
our disposal.
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