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Abstract — A method is derived for the analysis of mode interaction in thin-walled elastic beams. A
nonlinear plate theory ts employed for the plate segments of the beam, in which the exact nonlinear
expressions are used for the middle surfuce strain measures, but the bending measures are linearized.
The beam is subjected to a combination of axial compression and a constant bending moment. and
it is assumed to be simply supported at the ends. [n the calculation of the total potential cnergy.
the influence of the prebuckling deformations ts neglected. The finite strip method is used with the
transverse variation ol all three displacement components described by cubic polynomials in the
arc length. The nonlinear mode interaction is analysed by means of Koiter's asymptotic theory of
stability. Some applications of the method 1o representative problems are presented ina subsequent
paper by the authors. This shows that sigmticant mode interaction and imperfection sensitivity
oceur tn these structures.

NOTATION

a4, J-ndex and d-index coctlicients in noalinear equilibrivm equations, detined by eqn (16)

a Jandex coetlicient with one buckling mode replaced by one of the remaining cigentunctions u,

h width of tinite strip

b . auxaliiry d-index coctlicient, eqn (27)

Boar € auxiliary 4-index coctlicients, egn (29a)

N coctlicients mn Fourier expanstons of approxdmate displacements, eqn (17¢)

I3 Young's modulus

., clasticity tensor, egn (Sh)

/03 functions describing transverse variation of approximate displacements, eqn (17b)

£ auxiliary energy functional, eyn (16b)

1.1, principal moments of inertia of cross-section

IS contributions to stitfness matrix of a strip, associated with the mth harmonic, eqn (20a)

K=K contributions to stitfuess matnx of complete structure, assoctated with the mith harmonic,
eyn (21)

L length of beam

M internad moments in plate

m, wiave number associated with the ith buckling mode

N internad forees in plate

N, number of buckling modes

. R auxiliary functionals, eqns (24) and (25)

! plate thickness

u, displicement components

u displacement vector with components u,

u, displacement vector ot the ith buckling mode

u,.u, 2nd and 3rd order displacements, eqn (12)

u* displacement defining geometric impertection, eqn (14)

i, components of approximate displacement used in finite strip method, eyn (171

i displacement vector with components 4,

uy eqn (19)

[N eygns (17a) and (17¢)

u remaining cigenvector (not a buckling mode), egn (31)

v residual displacement, eqn (10)

o7 nodal displacements of strip, assoctated with mth harmonic, egn (18)

v vector with components o

A\ nodal displacement vector of complete structure, associated with mth harmonic, egn (21)

A\ nodal displacement vector of the ith buckling mode and associated with the mth harmonic

o nodal displicement vector of the 2nd order displacement ticld and associated with the mth
harmonic, eqn (26)

w displacement component normal to plate

t Also at Ramboll & Hannemann, Consulting Engincers, Teknikerbyen 38, 2830 Virum, Denmark.
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XXy locat coordinates for plate segment
the vector [x, v}
v alternative notation for v.. v,
; maximum absolute principal strain in plate
A Kronecker's delta
Eay middle surface strain measures, eqn (1)
n dimensionless coordinate v &
] increment in potential energy in transition from fundamental to adjacent state. eqn (Sa)

®..b. . ®. b, homogeneous functionals making up ®
. b, 0, ., Fréchet derivatives of functionals ®,. &, @, @, respectively, see eqns (7b). (13b) and

(16¢)
Ky middle surtuce bending measures. egn (2)
~ load factor
i eigensalue of the ith buckling mode
i, Lagrange multipliers, eqns (23a) and (26)
v Poisson’s ratio
<. cocthicients of buckling modes. eqn (10)
N coellicients determining geometric imperfections. egn ([4)
N coetticients of remaining eigenvectors, eqn (31)
Indices

Small Latin indices: lower indices 7.7, & assume the values [, 2, 3. An upper index m denotes the wave number.
Small Greek indices x, f, 4, g assume the values [, 2.

Small script indices . 4, £, 7 are used to number buckling modes and assume the values 12,0, .. 2

Capital Latin indices £, J are used to aumber nodat displacements and assume the values 1 to 12,

Other symbols are detined as they appear in the text.

L INTRODUCTION

Thin-walled clements are widely used as structural components in many types of metal
structures within the ficlds of civil, mechanical and acronaatical engineering. Because
of the slenderness of these structures, their design will often be governed by stability
considerations.

Stability failure in o thin-walled structure may oceur either as locul, plate-type buckling
of one or more of the compressed pancls, or as overall buckling of the complete structure
(lexural column buckling or flexural torstonal lateral buckling). In the case of local
buckling, the wavelength of the buckling mode is of the order of magnitude of the width
ol the cross-scction, whereas the wavelength of the overall global buckling mode is of the
order of the total fength of the structure. If the critical loads of these two types of buckling
are nearly the same, an interaction between the buckling modes will generally take place,
and this may result in a significant reduction of the load-carrying capacity of the structure.
Such problems often arise in connection with optimal structural design.

During the last two decades, a considerable amount of theoretical work has been
devoted to stability problems involving interaction between local and global buckling
modes. These investigations may be divided into two main groups.

The methods in the first group can be characterized in the following manner: the
overall behaviour of the structure is described by one-dimensional beam theory, and the
interaction is accounted for by the use of a reduced bending stiffness for the beam. This
reduced stiffness may be obtained from a theoretical analysis, in which a short segment of
the beam is considered and plate theory is applied to the individual panels, or it may be
determined empirically from test results. Among the theoretical studics in this group
mention should be made of van der Neut's investigations (van der Neut, 1969, 1976), of an
idealized column model and of stiffened pancls, the paper by Graves-Smith (1969) in which
approximate analytical solutions of von Karman's plate equations are utilized, and the
papers by Svensson and Croll (1975) and Svensson (1976). The work by Huancock and
Bradford also bclongs to this group (sce c.g. Bradford and Hancock, 1984 Hancock.
1981a, b) and involves a numerical solution of the nonlincar plate cquations (including
plasticity cttects) which 1s used to determine the reduced bending stiffness. The design rules
for thin-walled structures in codes of practice (often formulated in terms of “effective
widths™ or “effcctive cross-sections™) are usually based on methods of the above-mentioned
type.
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The methods in the second group are based on the nonlinear theory of elasticity. The
thin-walled structure is treated as an assemblage of rectangular plate segments. and an
expression for the total potential energy of the structure is derived. The finite strip method
or Galerkin's method is often emploved. thereby transforming the given continuous system
into an equivalent discrete model. The solution may be obtained either by :

(a) iterative solution of the nonlinear equilibrium equations derived from the energy
expression of the discrete model, or by

{b) application of Koiter’s theory of stability (Koiter, 1945). in which a series of linearized
problems are solved successively and used to construct a perturbation solution which
decribes the nonlinear behaviour of the structure. Koiter’s theory may be applied either
to the discrete model or directly to the given continuous system.

Among the investigations belonging to category (1) we may mention a series of
papers by Graves-Smith and Sridharan (c.g. Graves-Smith and Sridharan. 1978, 1980a.b:
Sridharan and Graves-Smith, 1981). in which the finite strip method is used for the thin-
walled structure. and the associated nonlinear equilibrium equations are solved iteratively.

Turning now to category (b) (application of Koiter's theory). one of the early con-
tributions is Tvergaard’s investigation of mode interaction in stiffened panels : see Tvergaard
(1973). Koiter and his co-workers have studied several problems of mode interaction in
thin-walled structures since the carly seventics (the van der Neut column and various types
of stiffened pancls; sce ¢.g. Koiter and Kuiken, 1971 ; Koiter, 1976 ; Koiter and Pignataro,
1976). An approximate mcthod is used in which an assumed displacement field involving
so-called slowly varying functions is introduced into the framework of Koiter's general
theory of stability. Mention should also be made of Byskov’s papers on mode interaction
in the van der Neut column and in stiffened cylindrical shells (see Byskov and Hutchinson,
1977 ; Byskov, [983), which utilize the theory of mode interaction developed in Byskov and
Hutchinson (1977).

Finally, a number of recent investigations by Sridharan and his co-workers should be
mentioned, see Benito (1983), Benito and Sridharan (19854, b), Sridharan (1983), Sridharan
and Ashrat Al (1985) and (1986). In these papers, the finite strip method is used in
conjunction with Koiter’s theory. In the first four papers, the calculations are restricted to
a 2-mode analysis involving one local and one global mode, and this will not always provide
a sufliciently accurate description of the structural response. However, a 3-mode analysis
with two locil and one global mode is introduced in the two latest papers, Sridhuran and
Ashraf AL (1985, 1986).

[nspection of the papers referred to hitherto will reveal that they all make use ot one
or more ol the following approximations and simplifications.

(1) Some of the nonlincar terms are often neglected in the expressions for the middle
surtace strain components of the plate segments.

(2) Local buckling is usually described by von Kuarman plate theory (frequently with
the additional assumption that the tongitudinal edges between adjacent plate segments do
not move), and global buckling is often described by beam theory.

(3) When Koiter's theory is employed, the 2nd order displacements are often approxi-
mated by particular solutions to the governing differential equations, thus violating the
boundary conditions at the transverse end scctions. If the 2nd order displacements are
represented by Fourier expansions in the longitudinal direction, only a few terms of these
expansions are usually retained in the analysis.

(4) In almost all the above papers, it is assumed that only two modes take part in the
interaction (one local and once global mode).

In the present paper, we derive a theory of thin-walled elastic beams capable of
describing the whole range of behaviour of these structures from local to global buckling
(this is in contrast to most of the existing mcthods, in which different theories are in fact
uscd to describe local and global buckling). The structure is regarded as an assemblage of
plate segments, and the finite strip method in conjunction with Koiter's theory is used for
the solution. It will appear from the description of the method in the tollowing sections



~¥
o

H. Motrsmasy and P GOLTERMANN

Fig. [. Plate scgment.

that the various approximations and simplifications listed previously are all dispensed with
in our proposed theory. A subsequent paper, Goltermann and Mollmann (1989). describes
the application of the theory to some representative problems.

The theory was first presented in the second author’s thesis, Goltermann (1985). and
wus used to study several examples of mode interaction in thin-walled beams.

2. GENERAL THEORY OF THIN-WALLED ELASTIC BEAMS

We consider thin-walled prismatic beams composed of planc, rectangular plate seg-
ments interconnected along longitudinal edges. Each plate scgment is assumed to be of
constant thickness which is small compared with the fength and width of the segment. For
cach segment we introduce a local Cartestan coordinate system v x x4, for which the x v ,-
plane coincides with the undeformed middle surface, and the x-axis is parallel o the
fongitudinal edges of the undetormed plate, see Fig. 1.

Let 1,(x) denote the components in the v-system of the displacement vector u of the
middle surface {measured from the undetformed state). Note that small Latin indices assume
the values 1, 2, 3, and that x = {x,, x,} denotes the convected coordinates to a generic point
on the middle surface. We shall occasionally write w(x) = u,(x) for the normal component
of the displacement.

Strain and bending measures
The following tensors are introduced to describe the strain and bending of the middle
surface of a plate segment.

Strain measures

8111 = §(“x,}i + “/I.x + ll;‘z“;,ﬂ) ( | )

Bending measures

Kipg = — Wy 2)

where small Greek indices assume the values 1,2, the comma notation is used for partial
derivatives, and the summation convention is valid for lower Greek indices and for lower
Latin indices.

The use of the complete nonlincar strain expression (1) (including nonlincar terms in
all the three displacement components) will enable us to describe overall buckling which
involves significant in-plane displacements. This is in contrast to the conventional von
Karman plate theory (nonlincar terms only in the normal displacement w) which can merely
describe transverse buckling of the plate.

[t will be seen that the expression (2) for the bending measures is lincarized with respect
to the displacements. Let y denote the maximum absolute principal strain in the plate and
assume that the order of magnitude of the displacement gradients is given by u,, = O(7"7)
(moderate rotations). It can then be shown that the relative error of the approximation (2)
is of order 7.
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Support conditions

The beam is assumed to be supported at the ends by transverse diaphragms which
prevent displacements in the planes of the diaphragms but offer negligible resistance to
displacements perpendicular to the diaphragms (simple supports). The corresponding geo-
metric boundary conditions are therefore given by

w.=0, w=0 3)
at the ends of the beam (x, =0 and x, = ).

Louading

We assume that the beam is loaded by prescribed axial stresses on the end sections
with a plane stress distribution over the cross-section. and that the prescribed stresses are
always parallel to the x-axis (“dead™ loading). The prebuckling equilibrium state (the
fundamental state) is then a state of uniaxial longitudinal stress. The loading is specified as
the product of a unit loading system and a scalar load factor 4.

Displacements of fundamental state neglected

In the following we shall assume that the displacements from the undeformed to the
fundamental state are negligible, and we shall omit these displacements when forming the
potential encrgy cxpression. This is an excellent approximation in the case of column
loading (unitormly distributed prescribed stresses), where the corresponding refative error
in the potential energy s of the order of the maximum principal strain of the fundamental
state (sce Koiter, 1982). However, in the case of moment loading (a non-constant plane
distribution of prescribed stresses), the approximation is somewhat less accurate. Thus, in
the case of overall lateral buckling of a thin-walled beam subjected to bending about the
major principal axis, it can be shown that the omission of the displacements of the funda-
mental state gives rise to a relative error in the critical moment which may be of noticeable
magnitude (of the order 14/1,, where 1, and [, (< 1,) are the principal moments of inertia
of the beam cross-section), although the postbuckling behaviour appears to be only slightly
aflected by the present approximation (see Goltermann, 1985; Pedersen, 1982).

Omission of the displacements of the fundamental state implies that we ignore the
ditference between the conligurations of the undeformed state and the fundamental state,
and we may consequently regard the previously defined displacements u, as additional
displacements from the fundamental state to an adjacent state.

Total potential energy
The omission of the displacements of the fundamental state implies that we have a
lincur fundamental state with internal forces and moments given by :

Ny =4iN,, Nu=NL=Ny =0, My = (4)
where Ny, is a lincar function of x, according to the present type of prescribed loading.
Assuming small strains and an clastic material, the increment in potential energy of

the beam in the transition from the fundamental state to an adjacent state (at the same load
factor £) is given by

®lu;i] = J‘ﬁ{}.N”u,Ju,_‘ + E i (Eapin + W UORprs) ) dot (5a)

where the elasticity tensor £,;,. in the case of a homogencous and isotropic material, 1s
given by
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In this formula. £ denotes Young's modulus. v is Poisson’s ratio. ¢ 1s the thickness of the
pliate segment. and d,, is Kronecker's delta. [t should be noted that the integration in (5a)
is extended over the middle surfaces of a// the plate segments of the beam. and that the
displacement components in each plate segment are referred to the assoctated local coor-
dinate system. The potential energy (54) may be written in the form

®lu:/] = O.[u] + id.[u] + D\ [u] + D, [u] (6a)

where ®,[u] and ®,[u] denote homogeneous functionals of the ith degree in the displacement
derivatives given by

[ Al [P .
(I)I[u] = J-ZE‘A/UN(“x,/i“AJt+ I_f{ “.1/‘“ ,iu) d“

WA
2 B 1/»');1“1_/{“1,/ “l./l d“'

(b:[ll] = J }‘/\.vl RUNEON dl

D Ju] = f{I:',,,”,u,_,u,.,,u,‘,u,.“ d.t. (6b)

VAINTERACTION ANALYSIS FOR CONTINUOUS SYSTEMS

The eritical points on the fundamental equilibrium path are determined by the cigen-
values of the lincar ctgenvalue problem

O [wdu) + Ad [u, du] =0 (7a)

where ou is u kinematically admissible but otherwise arbitrary displacement variation. The
bilincar tfunctionals ®, and @, are detined by

D) [u,v] = Dluy, <b,,[u, v] = d%uy (7b)

where dashes denote Fréchet derivatives.

It cun be shown that the problem (7a) in the present case possesses an enumerable set
of cigenvalues 4, (7 = 1,2.3,...) and associated cigenfunctions u,(x). The eigenvalues are
all non-zero, and the cigenfunctions satisty the orthogonality conditions

@y fu,u, =0, Ofu,.u,]=0 for 4% 7. (7¢)

We shall also consider the cffect of geometric imperfections. We assume that the
configuration of the unloaded imperfect structure is determined by an initial displacement
ficld u*(x). Koiter (1945, 1980) has shown that, in the case of small impertections, the
increment in potential energy @* for the imperfect structure is obtained by adding a term
A [u*, u] to the encrgy expression (6a) for the perfect structure. Hence, for the imperfect
structure,

O*[u:i] = ©.[u] + i [u] + D Ju] + D, fu] + i, [u*. u). (%)

Supposc that we wish to study the interaction for values of the load factor in an interval
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i, € 2 € 2. We then select a finite number N, of eigenfunctions (buckling modes) for which

the corresponding eigenvalues should include all those contained in the interval £, € 4 < 4.
The following notation is introduced for these quantities:

buckling modes: u, (x).

associated eigenvalues: 4, } ‘
Note that a small script index denotes the number of a buckling mode, and that the
summation convention is valid for script indices.

We now wish to normalize the buckling modes in a suttable manner. The functional
®.[u] ts positive definite (for a properly supported structure) and could therefore be used
as our norm. but we shall find it convenient to use the somewhat simpler functional &, [u]
for this purpose [cf. (6b)]. However. here we encounter a minor difficulty. A norm is
generally required to be positive definite, but it can be seen from (7a) that if there are both
positive and negative eigenvalues (as will occur, e.g. in problems of lateral buckling of
beams). then @, [u] will assume both positive and negative values. In order to deal with this
difficulty. we shall always sclect our buckling modes in such a way that all the associated
cigenvalues have the same sign (which may be assumed to be positive). It then follows from
(7a) that &.[u,] will be negative for all buckling modces. and we shall now normalize the
buckling modes in the following manner:

-—(i)l,[u_,.u;] = =20,u] =1 (9a)

where the repeated underlined indices should not be summed. FFrom (9a) and (7a) it follows
that

b, l{u;, u_,l = A, (9b)

Consider an equilibrium configuration in a ncighbourhood of the segment 4, € 4 < 4, of
the fundamental equilibrium path. The displacement of this equilibrium conftiguration is
written in the form

u(x) = u,(x)3, +v(x), (10)

i.e. @ lincar combination of buckling modes plus a residual displacement v, where v is
required to be orthogonal to the buckling modes in the sense that

b, [u,.v] = 0. (n

It can be shown (see Mollmann, 1984) that the residual displacement v can be expressed as
a power series of the form

V.G A) =1, (X ALE, +u, (X A)EE S+ (12)
convergent in the above neighbourhood. The u,, are called 2nd order displacements, the
u,,, are called 3rd order displacements, ete. In the following, we shall only retain the first

term of the expansion (12) (quadratic in the parameters &),
The 2nd order displacements u,, are determined by the equation

Oy u, V] + 4D, [u,. 0v] + iy [u, u, 0] = 0 (13a)

where the variation dv is required to be orthogonal to the buckling modes. and
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O [u.v.w] = pTuvw. (13b)
Assuming that the geometric imperfections are given by
ur(X) = u (x)3* (14

(primary imperfections). it ts found that the equilibrium configurations of the system in the
above-mentioned neighbourhood of the fundamental equilibrium path are determined
by the following non-linear algebraic equations for the parameters &, (see Byskov and
Hutchinson, 1977 Mollmann, 1984).

(4, =2V +a,.C i +a ,..8,88 = A2 (1%

where the underlined repeated indices should not be summed. It the complete series expan-
sion (12) had been used, we should have obtained an infinite power series on the left-hand
side of (15), and this series has in fact been truncated after the cubic terms in agreement
with our truncation in (12).

The coeticients a,,, and «. ., in (15) are completely symmetric in their indices and are
given by

|
a,,s =0y [u u, u]

a = o0 fuLu o) =3 F a2

— A, A=A a0 (16a)
where
Fofuvii] = O [uv] + 4D [u,v] (16b)
and
B fu v woz] = O uvwe, (rec)

4. FINITE STRIP METHOD

The plate segments of the beam are now divided into a finite number of longitudinal
strips. In cach strip, the transverse variation of the three displacement components will be
approximated by cubic polynomials, i.e. we introduce approximate displacements 4, for a
strip given by (see Goltermann, 1983)

4
d(xy) =Y Us(x)fuly) (17a)
N -

where we have changed the notation for the independent variables, i.c.
My v b oY
YRR ANES

The functions /(1) are the following cubic polynomials:

Si=2" =3+ fi=b( =217+
fo= =20"+35°. fi=bn' ) (17b)

where iy = 1/h. b being the width of the strip.
Further, the functions U,y (x) are taken to be finite trigonometric series as follows:



Interactive buckling i thin-walled beums —1. Theory 723

m
- Cie
m e
Clz—\ /’_—__‘__
.4‘:: Lem
C|3
m
c|1
b |

Fig. 2. Geometrical meaning of coctlicients .

i mn
Uiv(x) = Y ¢y cos - x
= L
17
. mn
Use(x) = Y %y sin —x
m=1 L
M mn
Uinlx) = Y iy sin - x (17¢)
m=i L

where L is the length of the beam and the quantities ¢y are instially unknown coctlicients,
Assuming that the origin of the local coordinate system is located at one end of the beam
(sce Fig. D.it will be seen that the displacements (17a) satisfy the geometric boundary
conditions (3) at the ends of the beam (simple supports).

It follows from the form of the cubic polynomials (17b) and from (17a) and (17¢) that
the coctlicients ¢y (for tixed values of 7 and mr) arc the amplitudes of the mth harmonics in
the expansions ot the displacement @, and the derivative ¢4,/0p at the longitudinal edges of
the strip, see Fig, 2.

Maost ol the previous applications of the finite strip method to the caleulation of
prismatic plate structures (see e.g. Graves-Smith and Sridharan, 1978 ; Benito and Srid-
haran, 19834, b) have involved the use of lincar tunctions of 3 Lo describe the transverse
variation of the in-plane displacements uy and u,, but cubic polynomials in v for the normal
displacement w. However, a coupling between in-plane and normal displacements of adjacent
scgments takes place at the longitudinal edges, and it is therefore appropriate to use the
same type of functions (cubic polynomials) for all three displacement components, as we
have done.

I the approximate displacements (17a) are substituted in the encrgy expression (8),
the potential energy of a strip becomes a 4th degree polynomial in the coeflicients ¢y, and
we have in ceffect replaced the continuous system by an approximate discrete model. This
approach was used, ¢.g. by Graves-Smith and Sridharan (1978, 19804, b). However, the
resulting energy expression gets rather unwieldy, and we prefer to proceed in a ditferent
manner. We substitute the displacement approximation (17a) in the governing cquations
(7a), (13a), (16a) of the continuous system. The resulting algebraic equations for the
determination of the modes, the 2nd order displacements, and the coctlicients of the
nonlincar cquations, will in fact coincide with those that are obtained from the energy
expression of the discrete model if the perturbation method (Koiter's theory) is used directly
for the discrete system., This follows from the fact that the Frechet derivatives in (7a), (13a),
and (16a) for the case of the discrete model reduce to partial derivatives, and we obtain the
usual formuluce for discrete systems. It will be convenient to introduce a special notation in
(17a) for the group of coeflicients associated with a particular wave number m in the
trigonometric functions in (17¢). The [2 coeflicients ¢}y associated with wave number nr are
denoted by

on__ f g
Yoo=
moognoogm g gt oo oo mom o 1T
= [ T T T T T T ] (18)

SAS 25:7-p
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The ¢ may be regarded as nodal displacements assoctated with wave number s, and the
displacements (17a) of the strip may then be written in the form

\’
ux, 1) = S uy (x, vy (1Y)
i

m o=

where it ts understood that the summation convention applies to lower indices but not to
upperindices,and /= 1.2.3.. .. 12, In the following. AD[u: 2] will denote the contribution
of u strip to the total potential energy of the beam. Consider now the quadratic energy
contribution (A®,[a] +/Ad.[@]) from a strip, where we have inserted the approximate
displacement a(x. ) [see (19)]. Each term of the integrands in the quadratic functionals
contatns a product of two trigonometric functions ot x. and because of the orthogonality
propertics of these functions, all such products involving two ditferent wave numbers vanish
when integrated. The result can therefore be written as a sum of contributions, each of
which involves only the nodal displacements v associated with one particular wave number,
1e.

v
ADLJa] + 20D [a] = S L) AT 4 A (20a)

-]
where A" and &A™ are 12 x 12 matrices with components given by

KLy = A a)  a)
k() = Ady [ul u)). (20h)

The integrations involved in (20a) are evaluated analytically, both in the v-direction (pro-
ducts of two trigonometric tunctions of v), and in the y-direction (polynomials in v of up
to 6th degree).

At the longitudinal edges of the strip the displacement vector as well as the derivative
Aw/Cy must be continuous when we pass from one strip to the adjacent one. These continuity
conditions will be satisfied if we introduce global nodal displacements V™ which describe
the nodal displacements of all the edges, and then express the local nodal displacements v
in terms of the global quantities ¥ Summing the contributions from the strips, the
quadratic energy tunctional of the complete beam may then be written in the form

\f
O[a] + 4D fa] = Y LV (K" + ARV (21)

ol

[t follows [sce (7a)] that the modes and cigenvalues ot the diserete mode! are determined
by the lincar matrix cigenvalue problem

(K" +7, K"V = 0. (22a)

Note that the x-variation of a mode involves only one wavelength (i.e. V75 3 0 for only onc
value of the wave number m). We shall assume that the modes are normalized in the
following manner:

—b, fu,.8,] = —(V)'K"VE =1 (22b)

We now select buckling modes u, for the discrete model (7 = 1.2....,V,). and we next
consider the 2nd order displacements ol the discrete model. Inserting the displacement
approximation (19) in cqns (13a) for the determination of the 2nd order displacements,
and removing the orthogonality restrictions on dv by means of appropriate Lagrange
multiplicrs, we obtain the equations
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®,[0,,.00]+4d, [0,.50] + 1D, [0.00)+ 'O, (6.5, .08 =0. b [0.8,]=0

(23a)
where i, (# = 1,2,....NV,) are the Lagrange multipliers.
\r \1

i, = Y u(x.)e?),. du= Y ul(x.v)or) (23b)
n =l o= |

and the 67" (and thus da) are not subjected to any orthogonality restrictions. The functional
@, [4..u,.d4] is linear in 0d. The corresponding contribution from a strip is written in the
form

\r i\
A, [a. .0, 00 = Y AD, 0. .4,.u]or] = ¥ (1) oV (24)

m= | =1

which defines the vector 7. Introducing global nodal displacements, and summing the
contributions from the strips, we get

. [ - _
by fd,. 8,00 = - Y (R 6V, (25)
m=1

tJi

The bifincar functionals @ and @ in (23a) can be expressed in terms of the matrices K™
and R™ [cf. (20b) and (21)]. From (23a) and (23) we then obtain the M osystems of lincar
cquations:

(K™ +AK"WV 4, KoV 4 ARY = 0,

(VI)'K"VT = 0. (26)

This meuns that we get one system of lincar equations for cach value of the wave number
(m=1.2,.... M) for the determination of the corresponding nodal displacements V7 of
the 2nd order displacement field and those Lagrange multipliers g for which the wave
number of the assoctated buckling mode 6, is equal to m.

The coctlicients in the nonlincar cquations are given by (16a). We first consider the
coetlicients «,,, with three indices. Let us detine quantities b, as follows

-
h, o= | By dtii, i, 4. (27)

NG

We then find that the three-index coetlicients are given by (see Goltermann., 1985)

a,,;= Wb, ofa,.u,u,] = 5(/’,,1 +h.+b,,) (28)
The integrations in the x-direction in (27) are evaluated analyvtically (products of three
trigonometric function of x). The results of these integrations show that ¢, ,, = 0 when the
sum of the wave numbers associated with the three modes (o, +m, +n1,) is an even nuinber.
The integrations in the v-direction are in cach strip computed numerically by means of
Gauss' integration formula (the intcgrands arce polynomials of up to 9th degree in v).f

We next consider the coctlicients «,, ., with four indices. Let us define quantities b,
and c,,,, as follows:

t A similar method is used to evaluate the components of the vector R7 L see (25), which also depends on
the trilincar functional &, .
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- . =4 =
h.,l/ = Ex/m.“rx“r'_;i“n,,“:y_u dA
v

o= l0,,. 0, +ib, [0, 06, (29a)

It is then found that the four-index coeflictents are given by (see Goltermann, 1983)

a ., = (l(b,,l/ +b.1,/ +/’.f,.4 )= 3¢ Cr, HCr ) (29b)

Now the 2nd order displacements of the discrete model are expressed as tinite trigonometric
series in the v-direction [see (17¢)]. When we form the expression (29a). for ¢, ... cach term
of the integrands will contain a product of two trigonometric functions of x, the integral
of which vanishes if the corresponding two wave numbers differ. The result can therefore
be written as a sum of contributions corresponding to each of the wave numbers, and we
obtain [cf. also (204) and (21)]

v
Cor = 3 (V)K" AK")VY,. (30)

-1

It remains to caleulate the quantitics b, .. see (29a) . 10 we insert the modes of the diserete
model directly into (29a),, cach term of the integrand will contiun a product of four
trigonometric functions of x, and these products can casily be integrated analytically.
However, it is found that the resulting vatues of «, ., are rather poorly determined, so that
a large number of terms will be required in the trigonometric serics in (17¢) to attain a
sufficient accuracy.

We shall theretore use an alternative method which yields a much timproved accuracy.
We expand terms of the type @@, in a finite trigonometric series in the x-direction. using
the same trigonometric functions as those appearing in the expansion of the derivatives
@y of the components of the 2nd order displacements. The resulting expansions are now
substituted in (29a),. The mtegrations in the v-direction (products of two trigonometric
functions of x) are performed analytically, while the integrations in the y-direction (poly-
nomials in y of up to 12th degree) are evaluated numerically by means of Gauss' integration
formula. The results of the x-integrations show that «,,,, = 0 when the sum of the wave
numbers associated with the four modes (m, +m, +m,+m,) is an uncven number.

Having determined approximate values of the cocllicients «,,, and «,,,, by means of
the finite strip method, we then insert these coetlicients in the nonlincar equilibrium equa-
tions (135). The numerical solution of these nonlincar equitions is determined by Newton -
Raphson iteration.

Dependence of wu,, and a, ., on loud fuctor 4

The presence of the term id, in (13a) shows that the 2nd order displacements u,; will
depend on the load factor 4, and it follows from (16a) that the four-index coctlicients «, .,
will likewise depend on 4. In order to gain insight into this dependence, the following results
will often prove uscful: Consider a discrete system with .+ degrees of freedom (e.g. the
finite strip model of the thin-walled beam). Such a system possesses . 4 lincarly independent
and mutually orthogonal cigenvectors. Suppose that we choose N, buckling modces u,
(¢ =1,2,...,Ny. Then the residual displucement v, see (10). which is orthogonal to the
buckling modes u,, can be expressed as a lincar combination of the remaining eigenvectors
up, i.c.

vV = u,fl (31)

(note that capital Greek indices have the range N+ 1 to . 17). Using (13a) and (7a), it can
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then be shown (see Goltermann, 1985, Appendix 2} that the 2nd order displacement and
the 4-index coefficients can be represented in the form

I 71 5,
u, = ;u_}‘r)ur (32a)

i 0= ql‘(bl . W)+ ; Z d,,rder +a,.1ra.,/r +d,ra,,r (32b)
T (r—rp)

where a, ¢ is given by formulae (27) and (28) with u, replaced by ur. and it is assumed that

the additional eigenvectors up are normalized according to (9a).

It can be seen from (32a) and (32b) thatu,, and a, ., will. in general. possess singularities
for 2 = 4. This observation can be used to explain the reason for our previous remark
(Section 3) about the necessity of including among the buckling modes all the modes with
eigenvalues in the interval of load factors 4, € 4 < 4, with which we are concerned in the
interaction analysis. It will now be scen that, when these modes are included among our
buckling modes. they will not appear in the summation in (32a). This means that we in fact
suppress the singularities in the said interval, and the resulting 2nd order displacements u,,
and 4-index coefticients «,,,, will therefore be continuous functions of 4 in the interval
YRR

However, for the types of thin-walled beams with which we are concerned. it is found
that there exists a whole cluster of closcly spaced eigenvalues in an interval just above the
smallest eigenvalue of the local modes. Tt follows from our previous remarks that if we wish
to usc the perturbation method for A-values in this interval, we must then include among
our buckling modes all the local modes assoctated with these closely spaced cigenvalues.
Although it would be possible, in theory, to perform such a multi-mode analysis, it is not
a practical proposition, as it would increase the amount of calculations by an almost
prohibitive amount. However, it will be shown in Part 1T of our paper (Goltermann and
Mollman, 1989) that, for certain types of local imperfections, we may in fact omit the multi-
mode analysis and restrict ourselves to a 3-mode analysis, and still obtain sufliciently
accurate results. The calculations in Part 1 will therefore mainly be restricted to 3-mode
analyses (orina few cases 2-mode analyses) of beams with doubly symmetric cross-sections,
in which the buckling modes comprise one global mode u, together with one or two local
modes, u, and u,. Since we use only three (or two) buckling modes, the singularities in the
4-index coeflicients have not been suppressed (this would require additional local buckling
modes), and some ot the coetlicients in the nonlincur equilibrium equations (15) of the 3-
mode analysis may therefore depend strongly on 4.

[t will be shown in Part 11 that the 2nd order displacements u, |, u,s, and uy;, and the
assoctited 4-index coetlicients ayyyy, @a122, and ayy3;, are only slightly influenced by the
value of 4. On the other hand, the mixed 2nd order displacements v, > and v, (associated
with the global mode and one focal mode), and corresponding mixed 4-index coetlicients
such as ¢y 2> and a4y, may depend strongly on 4. However, it is shown in Part [ that,
for the type of locul imperfections considered in the paper, the Z-sensitive coefficients do
not appear in our equations, and we obtain a valid solution by using a4 3-mode analysis.

5. CONCLUDING REMARKS

A mecthod has been developed for the analysis of nonlinear mode interaction in thin-
walled beams. The method is based on the finite strip method in conjunction with Koiter's
asymptotic theory of stability, and it is capable of describing the whole range of behaviour
of these structures from local to global buckling. A subscquent paper by the authors
describes some applications of the method to thin-walled beams having doubly symmetrical
cross-section and shows that significant mode interaction and imperfection sensitivity occur
for these structures. Further discussion of the performance and characteristics of the method
will be deferred to our second paper, where the results of the numerical examples are at
our disposal.
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